Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy.

نویسندگان

  • Rahul N Kanadia
  • Jihae Shin
  • Yuan Yuan
  • Stuart G Beattie
  • Thurman M Wheeler
  • Charles A Thornton
  • Maurice S Swanson
چکیده

RNA-mediated pathogenesis is a recently developed disease model that proposes that certain types of mutant genes produce toxic transcripts that inhibit the activities of specific proteins. This pathogenesis model was proposed first for the neuromuscular disease myotonic dystrophy (DM), which is associated with the expansion of structurally related (CTG)(n) and (CCTG)(n) microsatellites in two unrelated genes. At the RNA level, these expansions form stable hairpins that alter the pre-mRNA splicing activities of two antagonistic factor families, the MBNL and CELF proteins. It is unclear which altered activity is primarily responsible for disease pathogenesis and whether other factors and biochemical pathways are involved. Here, we show that overexpression of Mbnl1 in vivo mediated by transduction of skeletal muscle with a recombinant adeno-associated viral vector rescues disease-associated muscle hyperexcitability, or myotonia, in the HSA(LR) poly(CUG) mouse model for DM. Myotonia reversal occurs concurrently with restoration of the normal adult-splicing patterns of four pre-mRNAs that are misspliced during postnatal development in DM muscle. Our results support the hypothesis that the loss of MBNL1 activity is a primary pathogenic event in the development of RNA missplicing and myotonia in DM and provide a rationale for therapeutic strategies designed either to overexpress MBNL1 or inhibit MBNL1 interactions with CUG and CCUG repeat expansions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oral administration of erythromycin decreases RNA toxicity in myotonic dystrophy

OBJECTIVE Myotonic dystrophy type 1 (DM1) is caused by the expansion of a CTG repeat in the 3' untranslated region of DMPK. The transcripts containing an expanded CUG repeat (CUG (exp)) result in a toxic gain-of-function by forming ribonuclear foci that sequester the alternative splicing factor muscleblind-like 1 (MBNL1). Although several small molecules reportedly ameliorate RNA toxicity, none...

متن کامل

CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1.

The neuromuscular disease myotonic dystrophy type I (DM1) affects multiple organ systems with the major symptoms being severe muscle weakness, progressive muscle wasting and myotonia. The causative mutation in DM1 is a CTG repeat expansion in the 3'-untranslated region of the DM protein kinase (DMPK) gene. RNA transcribed from the expanded allele contains the expanded CUG repeats and leads to t...

متن کامل

Mouse model of muscleblind-like 1 overexpression: skeletal muscle effects and therapeutic promise.

Myotonic dystrophy (DM) is a multisystemic disease caused by CTG or CCTG expansion mutations. There is strong evidence that DM1 CUG and DM2 CCUG expansion transcripts sequester muscleblind-like (MBNL) proteins and that loss of MBNL function causes alternative splicing abnormalities that contribute to disease. Because MBNL1 loss is thought to play an important role in disease and localized AAV d...

متن کامل

Drosophila Muscleblind Is Involved in troponin T Alternative Splicing and Apoptosis

BACKGROUND Muscleblind-like proteins (MBNL) have been involved in a developmental switch in the use of defined cassette exons. Such transition fails in the CTG repeat expansion disease myotonic dystrophy due, in part, to sequestration of MBNL proteins by CUG repeat RNA. Four protein isoforms (MblA-D) are coded by the unique Drosophila muscleblind gene. METHODOLOGY/PRINCIPAL FINDINGS We used e...

متن کامل

Derepressing muscleblind expression by miRNA sponges ameliorates myotonic dystrophy-like phenotypes in Drosophila

Myotonic Dystrophy type 1 (DM1) originates from alleles of the DMPK gene with hundreds of extra CTG repeats in the 3' untranslated region (3' UTR). CUG repeat RNAs accumulate in foci that sequester Muscleblind-like (MBNL) proteins away from their functional target transcripts. Endogenous upregulation of MBNL proteins is, thus, a potential therapeutic approach to DM1. Here we identify two miRNAs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 31  شماره 

صفحات  -

تاریخ انتشار 2006